Example 2.9 A piece of silicon doped with arsenic ($N_d = 10^{17} \text{ cm}^{-3}$) is 100 µm

long, 10 μm wide and 1 μm thick. Calculate the resistance of this sample when contacted at each end.

Solution The resistivity of the silicon equals:

$$\rho = \frac{1}{qn\mu_n} = \frac{1}{1.6 \times 10^{-19} \times 10^{17} \times 727} = 0.086 \,\Omega\text{cm}$$

where the mobility was obtained from Table 2.7.3.

The resistance then equals:

$$R = \rho \frac{L}{Wt} = 0.086 \times \frac{100 \times 10^{-4}}{10 \times 10^{-4} \times 10^{-4}} = 8.6 \text{ k}\Omega$$

An alternate approach is to first calculate the sheet resistance, R_s :

$$R_s = \frac{\rho}{t} = \frac{0.086}{10^{-4}} = 860 \,\Omega / \text{square}$$

From which one then obtains the resistance:

$$R = R_s \frac{L}{W} = 860 \times \frac{100 \times 10^{-4}}{10 \times 10^{-4}} = 8.6 \text{ k}\Omega$$