Example 1.1 A metal has a workfunction of 4.3 V. What is the minimum photon energy in Joule to emit an electron from this metal through the photo-electric effect? What are the photon frequency in Terahertz and the photon wavelength in micrometer? What is the corresponding photon momentum? What is the velocity of a free electron with the same momentum?

Solution

The minumum photon energy, E_{ph} , equals the workfunction, Φ_M , in units of electron volt or 4.3 eV. This also equals

$$E_{ph} = q\Phi_M = 1.6 \times 10^{-19} \times 4.3 = 6.89 \times 10^{-19}$$
 Joule

The corresponding photon frequency is:

$$\mathbf{n} = \frac{E_{ph}}{h} = \frac{6.89 \times 10^{-19}}{6.626 \times 10^{-34}} = 1040 \text{ THz}$$

The corresponding wavelength equals:

$$I = \frac{hc}{E_{ph}} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{6.89 \times 10^{-19}} = \frac{1.24 \text{ mm}}{E_{ph} \text{ (eV)}} = 0.288 \text{ mm}$$

The photon momentum, p, is:

$$p = \frac{h}{I} = \frac{6.626 \times 10^{-34}}{0.288 \times 10^{-6}} = 2.297 \times 10^{-27} \frac{\text{kg m}}{\text{s}}$$

And the velocity, v, of a free electron with the same momentum equals

$$v = \frac{p}{m_0} = \frac{2.297 \times 10^{-27}}{9.11 \times 10^{-31}} = 2522 \text{ m/s}$$

Where m_0 is the free electron mass.