Problems

- 1. A silicon npn bipolar transistor with $N_E = 10^{18}$ cm⁻³, $N_B = 10^{17}$ cm⁻³ and $N_C = 10^{16}$ cm⁻³, $w_E = 1 \mu m$, $w_B = 0.5 \mu m$, and $w_C = 4 \mu m$ is biased with $V_{BE} = 0.6$ V and $V_{CB} = 0$ V. Use $\mathbf{m}_h = 1000$ cm²/V-s, $\mathbf{m}_D = 300$ cm²/V-s and $\mathbf{t}_n = \mathbf{t}_D = 100$ ns. The emitter area equals 10^{-4} cm².
 - a) Calculate the width of the quasi-neutral regions in the emitter, base and collector.
 - b) Calculate the minority-carrier diffusion lengths in the emitter, base and collector. Calculate the ratio of the minority-carrier diffusion length and the quasi-neutral region width in each region.
 - c) Calculate the excess-minority-carrier charge density per unit area in the emitter, base and collector.
 - d) Calculate the emitter current while ignoring the recombination in the depletion region.
 - e) Calculate the base transit time and the current due to recombination of electrons in the base.
 - f) Calculate the emitter efficiency and the base transport factor.
 - g) Calculate the transport factor and the current gain assuming there is no recombination in the depletion regions.
 - h) Calculate the collector capacitance, the majority-carrier charge density in the base and the Early voltage.
- 2. A silicon npn bipolar transistor has an emitter doping, $N_E = 2 \times 10^{18} \text{ cm}^{-3}$, an emitter width $w_E = 1 \text{ }\mu\text{m}$, and a base doping of $2 \times 10^{17} \text{ cm}^{-3}$. A current gain of 100 and an early voltage of 100 V is desired. Using $\mathbf{m}_n = 1000 \text{ cm}^2/\text{V-s}$, $\mathbf{m}_p = 300 \text{ cm}^2/\text{V-s}$ and $\mathbf{t}_n = \mathbf{t}_p = 100 \text{ ns}$, find the corresponding base width and base doping. The emitter area equals 10^{-4} cm^2 .