Example 2.8	Electrons in undoped gallium arsenide have a mobility of 8,800
	cm ² /V-s. Calculate the average time between collisions.
	Calculate the distance traveled between two collisions (also
	called the mean free path). Use an average velocity of 10^7 cm/s.
Solution	The collision time, t_c , is obtained from:
	$\mathbf{t}_c = \frac{\mathbf{m}_n m_e^*}{a} = \frac{0.88 \times 0.067 \times 9.1 \times 10^{-31}}{1.6 \times 10^{-19}} = 0.34 \text{ ps}$

q 1.6×10^{-19} where the mobility was first converted to MKS units.

where the mobility was first converted to MKS units. The mean free path, l, equals:

$$l = v_{average} t_c = 10^7 \times 0.34 \times 10^{-12} = 34 \text{ nm}$$