Example 6.2

Calculate the threshold voltage of a silicon nMOS capacitor with a substrate doping $N_a = 10^{17} \text{ cm}^{-3}$, a 20 nm thick oxide ($\mathbf{e}_{ox} = 3.9 \mathbf{e}_0$) and an aluminum gate ($\Phi_M = 4.1 \text{ V}$). Assume there is no fixed charge in the oxide or at the oxide-silicon interface. The threshold voltage equals:

Solution

$$V_T = V_{FB} + 2\mathbf{f}_F + \frac{\sqrt{4\mathbf{e}_s q N_a \mathbf{f}_F}}{C_{ox}}$$

$$= -0.93 + 2 \times 0.42$$

$$+ \frac{\sqrt{4 \times 11.9 \times 8.85 \times 10^{-14} \times 1.6 \times 10^{-19} \times 10^{17} \times 0.42}}{3.9 \times 8.85 \times 10^{-14} / 20 \times 10^{-7}}$$

$$= -0.09 \text{ V}$$

Where the flatband voltage was already calculated in example 6.1. The threshold voltage voltages for nMOS and pMOS capacitors with an aluminum or a poly-silicon gate are listed in the table below.

	Aluminum	p ⁺ poly	n ⁺ poly
nMOS	-0.09 V	0.98 V	-0.14 V
pMOS	-0.93 V	0.14 V	-0.98 V